R.Manchanda's MATHEMATICS *Classes*

Mathematics for IIT-JEE

JEE (Main)-2018 Paper-II

_		-						
1.	If $f(x) + 2f(1 - x) = x^2 + 1$, $\forall x \in R$, then the		papers than the number of papers in which he					
	range of f is:	1	fails. The number of ways in which he can fail,					
	(a) $\left(-\infty, \frac{1}{3}\right]$ (b) $\left[-\frac{1}{3}, \infty\right)$		in this examination is:					
			(a) 128	(b) 255				
	(c) $\left[-\frac{1}{3},\frac{1}{3}\right]$ (d) $\left[\frac{1}{3},\infty\right)$		(c) 256	(d) 9×(8)!				
2.	Let $A\{z \in C : z = 25\}$ and	7.	Let $T_{\rm r}$ denote the $r^{\rm th}$ term in the binomial					
	$B\{z \in C : z+5+12i = 4\}$. Then the minimum		expansion of $(a + 1)^{50}$. If $T_{25} + T_{27} = \frac{125}{52} T_{26}$					
	value of $ z - \omega $, for $z \in A$ and $\omega \in B$, is:	then the sum of all the values of a is:						
	(a) 6 (b) 7 (c) 8 (d) 9		(a) $\frac{1}{2}$ (b)	$\frac{3}{2}$ (c) 2 (d) $\frac{5}{2}$				
3.	If the product of the roots of the equation							
	$x^{2} - 5kx + 2e^{2log}e^{ k } - 1 = 0$ is 49, then the sum	8.	In an ordered s	et of four numbers, the first 3				
	of the squares of the roots of the equation is;		are in A.P. and	the last 3 are in G.P. whose				
	(a) 525 (b) 527 (c) 576 (d) 627		common ratio is	7/4. If the product of the first				
		iics	and fourth of t	hese number is 49, then the				
	[2 52 152] 🖈 🔤 🔤	JEE Y	product of the se	econd and third of these is:				
4.	If $A = 4$ 106 358 , then the determinant of	A	(a) 60 (b)	112 (c) 128 (d) 144				
	6 162 620							
	the matrix adj (2A) is equal to:	-9.M2	If $e^{(\sin^2 x + \sin^4 x + \sin^6 x$	$-\dots + ad \inf.) \log_e 2 \left(0 < x < \frac{\pi}{2} \right)$ satisfies				
	(a) 64 (b) 256 (c) 2048 (d) 4096			2				
		1	the equation	$y^2 - 5y + 4 = 0$, then				
5.	Let S be the set of all real values of λ for which		$\frac{\sin x}{\cos x - \sin x}$ is e	equal to:				
	the system of linear equations							
	$\lambda \mathbf{x} + \mathbf{y} + \mathbf{z} = 5 \lambda$		(a) $-(2+\sqrt{2})$	(D) $-(\sqrt{2}+1)$				
	$2\lambda x + 2y - z = 1$		(c) √2 – 1	(d) $2 + \sqrt{2}$				
	3y + z = 9							
	has infinitely many solutions. Then S;	10	Let $f(x) = x \begin{bmatrix} 1 \end{bmatrix}$ for all $x(\pm 0) \in R$ where for					
	(a) equals R	10.	each $t \in R$, $\begin{bmatrix} t \end{bmatrix}$ denotes the greatest integer less					
	(b) is a singleton							
	(c) contains exactly two elements	t	than or equal to	t. Then:				
	(u) is an empty set		(a) $\lim_{x \to 0^+} f(x) = 0$	(b) $\lim_{x \to 0} f(x) = 1$				
6	In order to get through in an examination of		<i>x</i> →∪+ ` ´	$x \rightarrow \frac{1}{3}+$				
0.	nine papers a candidate has to pass in more		(c) $\lim_{x \to \frac{1}{2^{-}}} f(x) = 1$	(d) $\lim_{x \to 2^{-}} f(x) = 1$				
500	2222 Soo 26D Chd Dh 001E00700E	1	2 505 20 D	h 0 Mahali Dh 9054242500				

R.Manchanda's MATHEMATICS *Classes*

11. If $f(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \\ \frac{1}{\sqrt{2} - \sqrt{1 + \cos x}} \end{cases}$	is a continuous	16. If $\int x^5 \sqrt{\frac{1+x}{1-x}}$	$\frac{\overline{\zeta^2}}{\zeta^2} dx = m\pi + n,$	then the c	ordered			
$\left(k\sqrt{2}\log_{e} 2\log_{e} 3, x = 0 \right)$	$\left(k\sqrt{2}\log_e 2\log_e 3, x=0\right)$		pair (m, n) is equal to					
function in the interval $[0, 2\pi)$, to:	then k is equal	(a) $\left(\frac{1}{3}, \frac{1}{8}\right)$		(b) $\left(\frac{1}{8}, \frac{2}{3}\right)$				
(a) 4 (b) 18 (c) 24	4 (d) 36	(c) $\left(\frac{1}{4}, \frac{1}{3}\right)$		(d) $\left(\frac{1}{8}, \frac{1}{3}\right)$				
12. If $y = y(x)$ is an implicit function $y\cos x + x\cos y = \pi$; then $y''(0)$ (a) π (b) $-\pi$ (c) 0	ion of x given by is equal to: (d) 2π	17 . The area (in the curve, drawn to it	The area (in sq.units) of the region bounded to the curve, $12y = 36 - x^2$ and the tangent drawn to it at the points, where the curve					
13 For each $x \in P$ let $f(x) = x $	For each $x \in P$ let $f(x) = x - 1 x - 1 $		e x-axis is					
$g(x) = \cos x \text{ and } \phi(x) = f(g(2 \sin x))$	(n x) - g(f(x)).	(a) 12	(b) 18 (c)	27 (d)) 6			
Then ϕ is:		18. Let $y = y(x)$	be the solution	ו of the diff	erential			
(a) differentiable at each point	of R	equation:	equation:					
(b) not differentiable at 0	NE	U dv	(
(c) not differentiable at 1	$x \log e^{x} \frac{d}{dx} + y = 3x \log_{e} x, (x > 1).$ If $y(e) = 0,$							
(π.	then y(e ²) is equal to							
(d) differentiable only in $\left(-\frac{x}{2}\right)$. 14. If f(x) = $ x^2 - 16 $ for all $x \in \mathbb{R}$	R, then the toral	(a) e ² ★	(b) $\frac{1}{2}e^2$ (c)	$\frac{3}{2}e^{2}$ (d)) 3e ²			
number of points of R at which	$f: R \rightarrow R$ attains	19 . Let the straid	ght lines, 5x – 3	y + 15 = 0 a	and			
local extreme values is:	of Advanc	e^{1} M ³ Sx + 3y - 15 form a triangle with the x-axis.						
(a) 1 (b) 2 (c) 3	(a) 1 (b) 2 (c) 3 (d) 4		Then the radius of the circle circumscribing this					
		triangle is			0			
15. Let $I = \int \frac{e^x}{e^{4x} + e^{2x} + 1} dx$, $\int -\frac{1}{2} dx = \int \frac{e^x}{e^{4x} + e^{2x} + 1} dx$	$\frac{e^{-x}}{e^{-4x}+e^{-2x}+1}dx,$	(a) $\frac{8}{5}$	(b) $\frac{17}{5}$ (c)	$\frac{12}{5}$ (d)	$\frac{16}{5}$			
then J – i equals:								
(a) $\frac{1}{2}\log_e \left \frac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1} \right + C$		20. The mirror image of the circle $u^2 + u^2 = 10u = 10u = 0$ in the line						
(1) $1_{1-x} e^{2x} + e^{x} + 1 = c$	$(1, 1, e^{2x} + e^{x} + 1)$	x + y = 10/	x + y - 10x - 10y = 0 in the line					
(b) $\frac{1}{2} \log_e \left \frac{e^{2x} - e^x + 1}{e^{2x} - e^x + 1} \right + C$		x + y + 5 = point:		assing throu	ign the			
(c) $\frac{1}{1} \log \left \frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1} \right + C$	(c) $\frac{1}{2} \log \left \frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1} \right + C$	(a) (-3, -7)	(b)	(-9, -7)				
$2^{10}g_e e^{2x} + e^x + 1 ^{10}$	$2^{i g_e} e^{2x} + e^{x} + 1 ^{i}$		(d)	(d) (-9, -11)				
(d) $\frac{1}{2}\log_e \left \frac{e^{4x} - e^{2x} + 1}{e^{4x} - e^{2x} + 1} \right + C$								

2

Mathematics for IIT-JEE

R.Manchanda's MATHEMATICS Classes

- **21.** Let S the focus of the parabola, $x^2 + 8y = 0$ and Q be any point on it. If P divides the line segment SQ in the ratio 1:2, then the locus of P is
 - (a) $9x^2 + 24y + 32 = 0$ (b) $9v^2 + 32 = 0$ (c) $32x^2 + 24x + 32 = 0$
 - (d) $32y^2 + 27x + 36 = 0$
- **22.** Let $\theta \in \left(0, \frac{\pi}{2}\right)$. If the eccentricity of the hyperbola $x^2 - \cos^2 \theta - y^2 = 6\cos^2 \theta$ $\sqrt{3}$ is

times the eccentricity of the ellipse $x^{2} + y^{2} \cos^{2} \theta$ then θ is equal to

(b) $\frac{\pi}{4}$

(d) $\frac{\pi}{3}$

(a)
$$\frac{\pi}{6}$$

(c)
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

23. If the line $\frac{x-1}{4} = \frac{y+3}{2} = \frac{z+5}{1}$ lies in the plane 2x + ly + mz = 16, then $l^2 + m^2$ is equal to (a) 16 (b) 20 (c) 98 (d) 85

24. The equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot \left(2\hat{i} - 3\hat{j} + 4\hat{k}\right) = 1$ and $\hat{r}\left(\hat{i} - \hat{j}\right) + 4 = 0$ and

perpendicular to the plane $\hat{r}\left(2\hat{i}-\hat{j}-\hat{k}\right)+4=0$,

(a)
$$\vec{r} \cdot (\hat{i} - 2\hat{j} + 4\hat{k}) = 3$$

(b) $\vec{r} \cdot (\hat{i} - 2\hat{j} + 4\hat{k}) = 5$
(c) $\vec{r} \cdot (2\hat{i} - \hat{j} + 5\hat{k}) = 3$
(d) $\vec{r} \cdot (2\hat{i} - \hat{j} + 5\hat{k}) = 5$

is:

Mathematics for **HT-**J

- **25.** If $\hat{a}, \hat{b}, \hat{c}$ be three unit vectors, \hat{b} and \hat{c} are non-parallel, such that $\hat{a} \times (\hat{b}, \hat{c}) = \frac{\hat{b} + \hat{c}}{2}$, then the angle between \hat{a} and \hat{b} is: (a) $\frac{\pi}{6}$ (b) $\frac{2\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{3\pi}{4}$
- 26. A box contains 6 red ball and 2 black balls. Two balls are drawn, at random, from it without replacement. If X denotes the number of red balls drawn then E(X) is equal to:

(a) $\frac{3}{2}$ (b) $\frac{1}{2}$ (c) $\frac{5}{2}$ (d) $\frac{27}{28}$

27. A six faced die is so biased that it is thrice likely to show an even number than an odd number, when thrown. If the die is thrown twice, the probability that sum of the numbers on the die is even is:

(a) $\frac{3}{4}$ (b) $\frac{5}{8}$ (c) $\frac{7}{9}$ (d) $\frac{3}{8}$

28. The total number of $x \in [0, 2\pi]$ which satisfy the equation $4(\cos^{10}x + \sin^2x) = 4 + \sin^6x$ $sin^{2}(2x)$, is:

(a) 2 (b) 3 (c) 5 (d) 6

29. $tan\left(\frac{1}{2}sin^{-1}\frac{4}{5} + \frac{1}{2}cos^{-1}\frac{15}{17}\right)$ is equal to: (a) $\frac{6}{7}$ (b) $\frac{2}{3}$ (c) $\frac{4}{15}$ (d) $\frac{9}{22}$

30. The Boolean expression $(p \land q) \lor ((\sim q) \lor p)$ is equivalent to:

(a)
$$\sim p \lor q$$
 (b) $\sim q \lor p$
(c) $p \lor q$ (d) $(\sim p) \lor (\sim q)$
3 SCF 38.Ph-9.Mohali, Ph. 805436259

SCO 223, Sec. 36D, Chd. Ph. 9815907905

SCF 38, Ph-9, Mohali, Ph. 8054362590